
queuey Documentation
Release 0.9

Mozilla Foundation

September 18, 2013

CONTENTS

i

ii

queuey Documentation, Release 0.9

Read the full documentation at http://queuey.readthedocs.org/

Wat? Another message queue?

Given the proliferation of message queue’s, one could be inclined to believe that inventing more is not the answer.
Using an existing solution was attempted multiple times with most every existing message queue product.

The others failed (for our use-cases).

Queuey is meant to handle some unique conditions that most other message queue solutions either don’t handle, or
handle very poorly. Many of them for example are written for queues or pub/sub situations that don’t require possibly
longer term (multiple days) storage of not just many messages but huge quantities of queues.

Queuey Assumptions and Features:

• Messages may persist for upwards of 3 days

• Range scans with timestamps to rewind and re-read messages in a queue

• Millions of queues may be created

• Message delivery characteristics need to be tweakable based on the specific cost-benefit for a Queuey deploy-
ment

• HTTP API for easy access by a variety of clients, including AJAX

• Authentication system to support multiple ‘Application’ access to Queuey with optional Browser-ID client au-
thentication

• A single deployment may support multiple Applications with varying message delivery characteristics, and
authentication restricted queue access

Queuey can be configured with varying message guarantees, such as:

• Deliver once, and exactly once

• Deliver at least once (and under rare conditions, maybe more)

• Deliver no more than once (and under rare conditions, possibly not deliver)

Changing the storage back-end and deployment strategies directly affects the message guarantee’s. This enables the
Queuey deployment to meet different requirements and performance thresholds.

For more background on Queuey, see the Mozilla wiki section on queuey.

CONTENTS 1

https://secure.travis-ci.org/#!/mozilla-services/queuey
http://queuey.readthedocs.org/
https://wiki.mozilla.org/Services/Sagrada/Queuey

queuey Documentation, Release 0.9

2 CONTENTS

CHAPTER

ONE

REFERENCE MATERIAL

Reference material includes documentation for the queuey HTTP API.

1.1 Installation

Queuey is composed of two main parts, the Queuey Python web application and the back-end storage layer used by
the web application which defaults to Cassandra.

Cassandra can be setup either as a single node, or preferably as a cluster for higher throughput, availability, and
durability. The Queuey web application should ideally be installed on separate web nodes to avoid sharing resources
with Cassandra but in smaller setups should be fine on the same node.

1.1.1 Installing the Queuey web application

Using the source

Pre-requisites:

• Python >=2.6

• Make

Checkout the source and build using git from Github:

git clone git://github.com/mozilla-services/queuey.git
make

This will setup a new virtualenv in this directory with all the other tools installed that Queuey needs to run.

1.1.2 Installing Cassandra

It’s recommended that Cassandra be installed using the Datastax Cassandra Community Edition as it goes through
more testing then the latest open-source version and provides a smooth upgrade path for the Enterprise Edition should
one wish to upgrade later. It also comes with support for the Datastax Opscenter to help manage the Cassandra cluster.

There is complete documentation on the Datastax site that explains the installation in more detail, a quick-start is
provided here based on those docs.

Before continuing to install Cassandra, you should make sure the machine you’re installing to has the necessary pre-
requisites:

3

http://cassandra.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://www.datastax.com/
http://www.datastax.com/products/community
http://www.datastax.com/
http://www.datastax.com/products/opscenter
http://cassandra.apache.org/
http://www.datastax.com/
http://cassandra.apache.org/

queuey Documentation, Release 0.9

Sun Java Runtime Environment 1.6.0_19 or later

You can check to see what version of Java is available by running:

java -version

Which should print something like:

Java(TM) SE Runtime Environment (build 1.6.0_29-b11-402-11D50b)

If you’re using an OpenJDK Java version, see the Datastax site for Installing Sun JRE on Redhat Systems or Installing
Sun JRE on Ubuntu systems.

These directions include installing the opscenter agent, which reports cluster and node information for the opscenter
dashboard.

Using the source

If you installed Queuey using make above and Cassandra is being installed on the Queuey node, the Makefile includes
Cassandra setup:

make cassandra

If setting up a cluster, or not installing Cassandra on the same node as the Queuey webapp the following directions
should be used. Also note that this step does not install opscenter, which also requires the following.

Download the source tarball to the desired directory (first check for newer versions):

cd $HOME
mkdir datastax
cd datastax

wget http://downloads.datastax.com/community/dsc-cassandra-1.1.2-bin.tar.gz

On your first node *only*, get opscenter
wget http://downloads.datastax.com/community/opscenter-2.1.2-free.tar.gz

Untar the distributions
tar -xzvf dsc-cassandra-1.1.2-bin.tar.gz
tar -xzvf opscenter-2.1.2-free.tar.gz

Remove the tarballs
rm *.tar.gz

Create a data/logging directory
mkdir $HOME/datastax/cassandra-data

The opscenter package only needs to be installed on a single node, as the opscenter agent for the other nodes will be
configured and tar’d up after the setup is run on the main node. This is because the agent.tar.gz that will be created
contains SSL authentication information to protect the agents communication.

For more efficient performance, its recommended that JNA be installed to improve memory performance.

1. Download jna.jar from the JNA project site.

2. Add jna.jar to $CASSANDRA_HOME/lib/ or otherwise place it on the CLASSPATH.

3. Edit the file /etc/security/limits.conf, adding the following entries for the user or group that runs Cassandra:

4 Chapter 1. Reference Material

http://www.datastax.com/
http://www.datastax.com/docs/1.0/install/install_package#installing-sun-jre-on-redhat-systems
http://www.datastax.com/docs/1.0/install/install_package#install-jre-deb
http://www.datastax.com/docs/1.0/install/install_package#install-jre-deb
http://cassandra.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://java.net/projects/jna/sources/svn/show/trunk/jnalib/dist/

queuey Documentation, Release 0.9

$USER soft memlock unlimited
$USER hard memlock unlimited

Via RPM’s

See the Datastax RPM installation instructions.

1.2 Configuration

1.2.1 Cassandra

Cassandra is configured via cassandra.yaml and log4j-server.properties files. Queuey doesn’t have any specific con-
figuration requirements for Cassandra, though availability and durability guarantees depend on appropriate Cassandra
settings.

Please refer to the Datastax community edition documentation for further details.

1.2.2 Pyramid

Queuey is implemented on top of the Pyramid web framework. Documentation for configuring WSGI servers and
general deployment techniques therefor also apply to Queuey. The Pyramid cookbook contains some advice on a
variety of web servers.

The simplest example of a Pyramid pipeline contains of the following:

[app:pyramidapp]
use = egg:queuey

[filter:catcherror]
paste.filter_app_factory = mozsvc.middlewares:make_err_mdw

[pipeline:main]
pipeline = catcherror

pyramidapp

1.2.3 Queuey

Queuey is configured via an ini-style file, which is also used to configure general Pyramid settings. This ini file
contains a number of sections. The following sections contain Queuey specific settings.

[application_keys]

Contains a mapping of application name to application key. The application key acts as a shared secret between server
and client. For example:

[application_keys]
app_1 = f25bfb8fe200475c8a0532a9cbe7651e

1.2. Configuration 5

http://www.datastax.com/docs/1.0/install/install_package#installing-cassandra-rpm-packages
http://www.datastax.com/docs/1.1/configuration/index
http://www.pylonsproject.org/projects/pyramid/about
http://docs.pylonsproject.org/projects/pyramid_cookbook/en/latest/deployment/index.html

queuey Documentation, Release 0.9

[storage]

Configures the storage for message data.

backend The type of storage, for Cassandra use: queuey.storage.cassandra.CassandraQueueBackend

Further settings are dependent on the storage.

[metadata]

Configures the storage for message metadata.

backend The type of storage, for Cassandra use: queuey.storage.cassandra.CassandraMetadata

Further settings are dependent on the storage.

Cassandra storage options

The Cassandra storages support the following additional settings:

host A comma separated list of either host or host:port values specifying the Cassandra servers. Defaults to local-
host:9160.

username A username used for connecting to Cassandra’s Thrift interface.

password A password used for connecting to Cassandra’s Thrift interface.

multi_dc A boolean indicating whether or not Cassandra runs in a multi-datacenter environment, defaults to False. If
enabled, read and write operations default to LOCAL_QUORUM instead of QUORUM.

create_schema A boolean value indicating if the required Cassandra schema should be automatically created during
startup. Defaults to True. If enabled the first server in the host list is used to create the schema.

database The name of the keyspace, defaults to MessageStore for the storage and MetadataStore for the metadata
section.

[metlog]

Queuey uses metlog for logging metrics. For detailed information see the metlog docs.

1.3 Queuey API

The Queuey API is documented by URL and valid HTTP methods for each Queuey resource. Arrows around the name
indicate variables in the URL.

All calls return JSON, and unless otherwise indicated methods that take input in the body expect form-encoded vari-
ables.

1.3.1 Queue Management

Access queue information, create, update, and delete queues. All calls to these methods must include an Authorization
header with the application key:

Authorization: Application <key here>

6 Chapter 1. Reference Material

http://metlog-py.readthedocs.org/en/latest/config.html

queuey Documentation, Release 0.9

Calls missing a valid Authorization header or valid Application key will be rejected.

GET /v1/{application}

Path arguments application – Application name

Opt. params

• limit (integer) – Amount of queues to list.

• offset (string) – A queue name to start with for paginating through the result

• details (boolean) – Whether additional queue details such as the consistency, type, parti-
tions, and principles for the queue should also be returned. Defaults to false.

• include_count (boolean) – When including details, should the total message count be in-
cluded? Defaults to false.

Returns a list of queues for the application. No sorting or ordering for this operation is available, queues are not
in any specific ordering but their order is consistent for proper pagination.

Example response:

{
’status’: ’ok’,
’queues’: [

{’queue_name’: ’a queue’},
{’queue_name’: ’another queue’}

]
}

Example response with details:

{
’status’: ’ok’,
’queues’: [

{
’queue_name’: ’ea2f39c0de9a4b9db6463123641631de’,
’partitions’: 1,
’created’: 1322521547,
’type’: ’user’,
’count’: 932

},
{

’queue_name’: ’another queue’,
’partitions’: 4,
’created’: 1325243233,
’type’: ’user’,
’count’: 232

},
]

}

POST /v1/{application}

Path arguments application – Application name

Opt. params

• queue_name – Name of the queue to create

• partitions (integer) – How many partitions the queue should have. Defaults to 1.

1.3. Queuey API 7

queuey Documentation, Release 0.9

• type – Type of queue to create, defaults to user which requires authentication to access
messages.

• consistency – Level of consistency for the queue, defaults to strong.

• principles – List of App or Browser ID’s separated with a comma if there’s more than one

Create a new queue for the application. Returns a JSON response indicating the status, the UUID4 hex string of
the queue name (if a queue_name was not supplied), and the partitions created.

Calling this method with no parameters at all will yield a response like the one below.

Example response:

{
’status’: ’ok’,
’queue_name’: ’ea2f39c0de9a4b9db6463123641631de’,
’partitions’: 1,
’type’: ’user’,
’consistency’: ’strong’

}

PUT /v1/{application}/{queue_name}

Path arguments

• application – Application name

• queue_name – Queue name to access

Opt. params

• partitions (integer) – How many partitions the queue should have.

• type – Type of queue to create, ‘user’ or ‘public’.

• consistency – Level of consistency for the queue.

• principles – List of App or Browser ID’s separated with a comma if there’s more than one

Update queue parameters. Partitions may only be increased, not decreased. Other settings overwrite existing
parameters for the queue, to modify the principles one should first fetch the existing ones, change them as
appropriate and PUT the new ones.

Example response:

{
’status’: ’ok’,
’queue_name’: ’ea2f39c0de9a4b9db6463123641631de’,
’partitions’: 1,
’type’: ’user’,
’consistency’: ’strong’

}

DELETE /v1/{application}/{queue_name}

Path arguments

• application – Application name

• queue_name – Queue name to access

Delete a queue and all its partitions and messages.

Example success response:

8 Chapter 1. Reference Material

queuey Documentation, Release 0.9

{’status’: ’ok’}

1.3.2 Message Management

Create messages on a queue, get messages, and delete messages. Access varies depending on the queue, queues with
a type of public may have messages viewed without any authentication. All other queue’s require an Application
key to create messages, and viewing messages varies depending on queue principles. By default an Application may
create/view messages it creates unless a set of principles was registered for the queue.

Responses containing messages include a message timestamp. The value is in seconds since the epoch in GMT. It uses
a precision down to multiples of 100 nanoseconds. The precision matches that of UUID1s used for the message_id.
Note that double precision floating point numbers don’t guarantee enough significant decimal digits to represent those
numbers accurately.

GET /v1/{application}/{queue_name}

Path arguments

• application – Application name

• queue_name – Queue name to access

Opt. params

• since – All messages newer than this timestamp or message id. Should be formatted as
seconds since epoch in GMT, or the hexadecimal message id. For exact results with single
message accuracy use the hexadecimal message id.

• limit – Only return N amount of messages.

• order – Order of messages, can be set to either ascending or descending. Defaults to as-
cending.

• partitions – A specific partition number to retrieve messages from or a comma separated
list of partitions. Defaults to retrieving messages from partition 1.

Get messages from a queue. Messages are returned in order of newest to oldest.

Example response:

{
’status’: ’ok’,
’messages’: [

{
’message_id’: ’3a6592301e0911e190b1002500f0fa7c’,
’timestamp’: 1323973966282.637,
’body’: ’jlaijwiel2432532jilj’,
’partition’: 1

},
{

’message_id’: ’3a8553d71e0911e19262002500f0fa7c’,
’timestamp’: 1323973966918.241,
’body’: ’ion12oibasdfjioawneilnf’,
’partition’: 2

}
]

}

POST /v1/{application}/{queue_name}

Path arguments

1.3. Queuey API 9

queuey Documentation, Release 0.9

• application – Application name

• queue_name – Queue name to access

A body containing a single message and optional partition value, or a set of message and partition pairs by
number.

When the partition is not specified, the message will be randomly assigned to one of the partitions for a queue
(or just the first one if the queue has only one partition).

A TTL can be specified per message, in seconds till it should expire and be unavailable.

Posting a batch of messages (Using JSON)

Include a Content-Type HTTP header set to application/json with a body like the following:

{’messages’: [
{

’body’: ’this is message 1’,
’ttl’: 3600,

},
{

’body’: ’this is message 2’,
’partition’: 3

}
]}

Post an individual message

Any Content-Type header will be recorded with the message. The body is assumed to be the entirety of
the POST body. The TTL or Partition can be set by including the appropriate value with either X-TTL or
X-Partition HTTP headers in the request.

Example POST as seen by server including both optional HTTP headers:

POST /v1/notifications/ea2f39c0de9a4b9db6463123641631de HTTP/1.1
Host: site.running.queuey
User-Agent: AwesomeClient
Content-Length: 36
Content-Type: application/text
X-TTL: 3600
X-Partition: 2

A really cool message body to store.

Example success response:

{
’status’: ’ok’,
’messages’ [

{
’key’: ’3a6592301e0911e190b1002500f0fa7c’,
’timestamp’: 1323976306.988889,
’partition’: 1

},
]

}

GET /v1/{application}/{queue_name}/{messages}

Path arguments

• application – Application name

10 Chapter 1. Reference Material

queuey Documentation, Release 0.9

• queue_name – Queue name to access

• messages – A single hex message id, or comma separated list of hex message id’s. To
indicate partitions for the messages, prefix the hex message with the partition number and a
colon.

Get messages by their message ids from a queue. This API acts as a search, so any message that cannot be found
is omitted from the result.

Example response:

{
’status’: ’ok’,
’messages’: [

{
’message_id’: ’3a6592301e0911e190b1002500f0fa7c’,
’timestamp’: 1323973966282.637,
’body’: ’jlaijwiel2432532jilj’,
’partition’: 1

},
{

’message_id’: ’3a8553d71e0911e19262002500f0fa7c’,
’timestamp’: 1323973966918.241,
’body’: ’ion12oibasdfjioawneilnf’,
’partition’: 2

}
]

}

PUT /v1/{application}/{queue_name}/{messages}

Path arguments

• application – Application name

• queue_name – Queue name to access

• messages – A single hex message id, or comma separated list of hex message id’s. To
indicate partitions for the messages, prefix the hex message with the partition number and a
colon.

Opt. params X-TTL – The message’s TTL, defaults to three days.

Overwrite existing messages with new data or create new messages. The body is assumed to be the entirety of
the PUT body for all messages. There’s no support for doing a batch update with different body or TTL values.

Example PUT as seen by server:

PUT /v1/my_application/somequeuename/2%38cc967e0cf1e45e3b0d4926c90057caf HTTP/1.1
Host: site.running.queuey
User-Agent: AwesomeClient
Content-Length: 9
Content-Type: application/text
X-TTL: 3600

New text.

Example success response:

{’status’: ’ok’}

DELETE /v1/{application}/{queue_name}/{messages}

1.3. Queuey API 11

queuey Documentation, Release 0.9

Path arguments

• application – Application name

• queue_name – Queue name to access

• messages – A single hex message id, or comma separated list of hex message id’s. To
indicate partitions for the messages, prefix the hex message with the partition number and a
colon.

Delete a message, or multiple messages from a queue. The message ID must be prefixed with the partition
number and a colon if the queue has multiple partitions to indicate which one contains the message.

Example of deleting a message from partition 2:

The %3 is a URL encoded colon
DELETE /v1/my_application/somequeuename/2%38cc967e0cf1e45e3b0d4926c90057caf

Example success response:

{’status’: ’ok’}

1.4 Changelog

1.4.1 0.9 (unreleased)

1.4.2 0.8 (2012-08-28)

Features

• Compatibility with Cassandra 1.1

• Add new API’s to get, post and update messages by their message id

• Add new memory storage backend for testing purposes.

• Add metlog based metrics logging.

• Use pycassa’s system manager support to programmatically create the Cassandra schema during startup.

Bug fixes

• Fix precision errors in server side message id to timestamp conversion.

• Enforce message keys to be valid UUID1 instead of just any UUID.

12 Chapter 1. Reference Material

CHAPTER

TWO

SOURCE CODE

All source code is available on github under queuey.

13

https://github.com/mozilla-services/queuey

queuey Documentation, Release 0.9

14 Chapter 2. Source Code

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• Glossary

15

http://docs.python.org/glossary.html#glossary

queuey Documentation, Release 0.9

16 Chapter 3. Indices and tables

CHAPTER

FOUR

LICENSE

queuey is offered under the MPL 2.0 license.

17

queuey Documentation, Release 0.9

18 Chapter 4. License

CHAPTER

FIVE

AUTHORS

queuey is made available by the Mozilla Foundation.

19

